|
Land Warrior was a United States Army program, cancelled in 2007,〔() U.S. Army Budget Request Documents FY2008 (page 4)〕〔(Stryker Brigade News – Land Warrior funds cut )〕 but restarted in 2008,〔()〕 that used a combination of commercial, off-the-shelf technology (COTS) and current-issue military gear and equipment designed to: * integrate small arms with high-tech equipment; * provide communications and command and control at the infantry soldier level; * look at the individual infantry soldier as a complete unit rather than as a segment of a larger force. While technology had long been a primary focus of the U.S. Armed Forces, very little of it had actually been adopted by the U.S. Army infantry soldier. With growing concerns of urban warfare and dismounted infantry actions, the U.S. Army recognized the need to upgrade an individual infantryman. The Land Warrior program drew upon many wearable computer concepts, and maximized existing technologies to correct most infantry soldier limitations in the short term. The SI (Stryker Interoperable) version of the system completed U.S. Army testing as of November 2004. Due to limited resources, and issues with the overall weight of the system, Land Warrior was cancelled by the Army in February 2007, but restarted in July 2007. Despite the initial system's cancellation the 4th Stryker Brigade Combat Team (SBCT) was deployed to Iraq as part of the spring 2007 "surge" of U.S. forces, and used the Land Warrior, on which they had trained for the previous few years.〔(FCW.com News – Army budget would kill Land Warrior )〕 The systems and technology of the Land Warrior program were to be rolled into the Future Force Warrior program, and the Army has developed the Nett Warrior system to supersede Land Warrior as its next soldier network program. Internationally, there are several similar development programs, these include IdZ (Germany), FIST (UK), Félin (France), Land 125 (Australia), MARKUS (Sweden), Soldato Futuro (Italy), IMESS (Switzerland), Projekt TYTAN (Poland), FINSAS (India) and ACMS (Singapore), Ratnik (Russia), SARV (Iran). == History == The original Land Warrior program, by other name, was undertaken by General Electric in Moorestown, New Jersey approximately 1989, as a prototype having intent to eventually reduce size and weight in future phases. Then in the mid-1990s, the name Land Warrior was initially handled by a division of Hughes Aerospace, which was subsequently acquired by Raytheon. (The soldier radio component of Land Warrior was to be supplied by the Integrated Information Systems division of Motorola.〔 Initial tests with soldiers were conducted in 1995-96 in Fort Lewis with 1st Bn, 9th Infantry Regiment (light) using both squad-level information systems and Humvee mounted systems. Early iterations (prototypes) of TWS (Thermal Weapons Sights) and integrated GPS systems were also in use with some initial, albeit limited, success. In 2001, Motorola's Integrated Information Systems division, headquartered in Scottsdale, Arizona, was acquired by General Dynamics and was renamed General Dynamics Decision Systems (GDDS) (). This division, now part of GDC4S, is the holder of the current Land Warrior – Stryker Interoperable contract.〕) Early demonstration versions of the LW system used software written in the Ada programming language running on a Unix platform. In January 1999, in an attempt to reduce development costs and accelerate the program, the development work was transitioned to a multi-company team that had been organized by Exponent (NASDAQ: EXPO), an engineering firm with headquarters in Silicon Valley. An intensive redesign of the system ensued, and both the embedded firmware and the application software were rewritten from scratch. Many of the COTS hardware components were purchased (literally "off the shelf") at Fry's Electronics, the Silicon Valley retail chain. Approximately 100 proof-of-concept Land Warrior units were built and successfully demonstrated in September 2000 by a U.S. Army platoon that was air-dropped into a large war-fighting exercise at Fort Polk, Louisiana. These initial prototype units, designated Land Warrior v0.6, were built around a PC/104 computer platform running Microsoft Windows. The system used the CAN-bus protocol on the wired PAN (personal area network). The communications subsystem was built using Windows CE running on a StrongARM platform, and the wireless network protocol was IEEE 802.11. During the Fort Polk exercise, preliminary interoperability with traditional military radio networks was also demonstrated for LW v0.6, using a two-way, SINCGARS-compatible gateway radio. The success of the Fort Polk exercise reinvigorated the program, and further funding was allocated for the next phase of LW development. A "Land Warrior Consortium" was formed by several of the contracting firms, with the goal of designing and building the first field-able LW system, designated LW v1.0, later LW-IC (Land Warrior – Initial Capability). The basic Windows and WinCE platforms were retained, and a new hybrid PAN was designed, which drew upon both USB and FireWire protocols. A modified version of the IEEE 802.11 protocol was adopted, which added various enhancements for COMSEC and information security, mobile ad hoc network (MANET) capabilities, and support for multi-hop packet routing. In 2003, a variant of the LW-IC system was developed to incorporate features of the CombatID System (CIDS) – a form of IFF (identification friend or foe) that is designed to reduce the potential for friendly fire incidents. This version, designated LW-CIDS, was successfully demonstrated in interoperational tests with several other CIDS-equipped units at Moffett Field, California. As the Land Warrior program matured, it became clear that its successful deployment would hinge significantly upon the key factor of batteries. The need to continuously resupply (or recharge) LW batteries was proving to be a major logistical challenge. This was one of the driving factors behind the decision to move away from an earlier plan to initially equip airborne Army units, as in the Fort Polk exercise, and to focus instead upon those using Stryker ground vehicle systems. This latter approach would enable more LW batteries to be distributed and/or recharged as needed. The contract for development of the Land Warrior – Stryker Interoperable (LW-SI) version of the system was awarded in 2003 to an industry team that was led by General Dynamics〔 and included most of the existing Land Warrior Consortium companies. At about the same time, further development of the existing LW-IC system was halted and the manufacturing plans for it were shelved indefinitely. The Land Warrior Consortium was formally disbanded and work got under way on the newly focused LW-SI program. In September 2006, the 4th Battalion, 9th Infantry Regiment trained with and evaluated the LW-SI system.〔Erwin, Sandra. ("'Land Warriors' Link Up With Stryker Vehicles" ), ''National Defense Magazine'', May 2006.〕〔("Army assess new Land Warrior System" ), ''Army News Service'', 22 June 2006.〕 The system successfully completed the assessment, which was based on Joint Capabilities Integration and Development System (JCIDS) guidance, and received testimonials from the unit. However, funding for further system development under the Land Warrior program was suspended in February 2007, although the 4-9 Infantry was deployed to Iraq and used the LW-SI system extensively. The Land Warrior program was then re-instated.〔 This was the final trial phase before the key decision is made on the overall future of wearable soldier systems, including Future Force Warrior. The decision was made in 2011 to continue the program.〔〔〔 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Land Warrior」の詳細全文を読む スポンサード リンク
|